# metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# catena-Poly[[[aqua[2-(6-chloropyridin-3yl)acetato- $\kappa O$ ]sodium]-di- $\mu$ -agua] monohydrate]

#### Yuwei Mi, Dezhi Sun,\* Suyuan Zeng and Nana Yan

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: sundezhi@lcu.edu.cn

Received 22 March 2012: accepted 31 March 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.084; data-to-parameter ratio = 14.4.

The crystal structure of the title compound, {[Na(C<sub>7</sub>H<sub>5</sub>Cl- $NO_2$ )(H<sub>2</sub>O)<sub>3</sub>]·H<sub>2</sub>O}<sub>n</sub>, features polymeric chains along [010]. The Na<sup>+</sup> cation is octahedrally coordinated by four bridging water molecules, a terminal water molecule and an O atom derived from a monodentate carboxylate ligand. Adjacent polyhedra share two  $O \cdot \cdot O$  edges. The polymeric chains are linked into a three-dimensional network via O-H···O and  $O-H \cdot \cdot \cdot N$  hydrogen bonds.

#### **Related literature**

For a related structure, see: Guo et al. (2004).



#### **Experimental**

Crystal data [Na(C7H5ClNO2)(H2O)3]·H2O  $M_r = 265.62$ Monoclinic,  $P2_1/c$ a = 12.4695 (12) Åb = 5.5377 (5) Å

c = 17.0557 (17) Å $\beta = 91.190 \ (1)^{\circ}$  $V = 1177.48 (19) \text{ Å}^3$ Z = 4Mo Ka radiation



 $0.47 \times 0.21 \times 0.10 \text{ mm}$ 

 $\mu = 0.37 \text{ mm}^{-1}$ T = 298 K

#### Data collection

| Siemens SMART CCD area-              | 5621 measured reflections              |
|--------------------------------------|----------------------------------------|
| detector diffractometer              | 2082 independent reflections           |
| Absorption correction: multi-scan    | 1558 reflections with $I > 2\sigma(I)$ |
| (SADABS; Sheldrick, 1996)            | $R_{\rm int} = 0.027$                  |
| $T_{\min} = 0.844, T_{\max} = 0.964$ |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.032$ | 145 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.084$               | H-atom parameters constrained                              |
| S = 1.05                        | $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 2082 reflections                | $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ |

#### Table 1 Selected bond lengths (Å).

| Na1-O1               | 2.3632 (15) | Na1-O4 | 2.4239 (17) |
|----------------------|-------------|--------|-------------|
| Na1-O5 <sup>i</sup>  | 2.3872 (16) | Na1-O3 | 2.5142 (17) |
| Na1-O3 <sup>ii</sup> | 2.4032 (16) | Na1-O5 | 2.5187 (16) |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 1.

#### Table 2 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$        | D-H  | $H \cdots A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdots A$ |
|-------------------------|------|--------------|-------------------------|---------------------------|
| $O3-H3A\cdots O4^{iii}$ | 0.85 | 2.06         | 2.893 (2)               | 168                       |
| $O4-H4A\cdots O2^{iv}$  | 0.85 | 1.91         | 2.762 (2)               | 175                       |
| $O3-H3B\cdots O6^{v}$   | 0.85 | 1.97         | 2.775 (2)               | 159                       |
| $O4-H4B\cdots O2^{v}$   | 0.85 | 1.98         | 2.824 (2)               | 169                       |
| $O5-H5A\cdots O6^{v}$   | 0.85 | 2.08         | 2.886 (2)               | 157                       |
| $O5-H5B\cdots O1^{ii}$  | 0.85 | 2.07         | 2.9214 (19)             | 175                       |
| $O6-H6A\cdots N1^{vi}$  | 0.85 | 2.05         | 2.900 (2)               | 173                       |
| $O6-H6B\cdots O2$       | 0.85 | 1.95         | 2.796 (2)               | 176                       |

Symmetry codes: (ii) -x + 1, -y + 2, -z + 1; (iii) x, y + 1, z; (iv) x, y - 1, z; (v)  $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$ ; (vi)  $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$ 

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the State Key Laboratory of Crystal Materials (SRT11055HX2), Liaocheng University, China, and the Liaocheng University Foundation (xo9013) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5075).

#### References

Guo, M.-L. (2004). Acta Cryst. E60, m1684-m1685.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

# supplementary materials

Acta Cryst. (2012). E68, m584 [doi:10.1107/S1600536812014092]

# *catena*-Poly[[[aqua[2-(6-chloropyridin-3-yl)acetato- $\kappa O$ ]sodium]-di- $\mu$ -aqua] monohydrate]

# Yuwei Mi, Dezhi Sun, Suyuan Zeng and Nana Yan

## Comment

In the title compound (Fig. 1), (I), the Na atom has a distorted  $O_6$  octahedral environment formed by a terminal water molecule O4, four O atoms derived from  $\mu_2$ -bridging water molecules and one carboxylate (O1) atom of the 6-chloro-3pyridineacetate ligand (Table 1). Each coordination octahedron shares two O···O edges with two adjacent octahedra, thus producing infinite chains. Similar chains were found in the structure of sodium carboxynitrobenzoate tetrahydrate (Guo, 2004). In (I), the chains are linked into a three-dimensional network *via* O—H···O and O—H···N hydrogen bonds (Table 2 and Fig. 2).

## Experimental

To a solution of 6-chloro-3-pyridineacetic acid (1 mmol) in doubly-distilled water (60 ml), a solution of an equimolar amount of sodium hydroxide in doubly-distilled water (40 ml) was added drop wise at room temperature. After vigorous stirring for 4 h, the resulting mixture was evaporated *in vacuo* to a volume of about 20 ml and filtered hot. The filtrate was then set aside for crystallization at room temperature. Two weeks later, colourless crystals of the title compound were isolated.

## Refinement

The H atoms were placed in geometrically idealized positions (O—H = 0.85, C—H = 0.93–0.97 Å) and treated as riding on their parent atoms, with  $U_{iso}(H) = 1.5U_{eq}(O)$  or  $U_{iso}(H) = 1.2U_{eq}(C)$ .

## **Computing details**

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT* (Siemens, 1996); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).



#### Figure 1

The coordination environment around the Na atom showing numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: i - x + 1, -y + 1, -z + 1; ii - x + 1, -y + 2, -z + 1. The lattice water molecule and hydrogen atoms have been omitted.



# Figure 2

Packing diagram of (I), showing hydrogen bonds as dashed lines.

#### *catena*-Poly[[[aqua[2-(6-chloropyridin-3-yl)acetato-*κO*]sodium]- di-*µ*-aqua] monohydrate]

| Crystal data                                   |
|------------------------------------------------|
| $[Na(C_7H_5CINO_2)(H_2O)_3]$ ·H <sub>2</sub> O |
| $M_r = 265.62$                                 |
| Monoclinic, $P2_1/c$                           |
| Hall symbol: -P 2ybc                           |
| a = 12.4695 (12)  Å                            |
| b = 5.5377(5) Å                                |
| c = 17.0557 (17)  Å                            |
| $\beta = 91.190 (1)^{\circ}$                   |
| V = 1177.48 (19) Å <sup>3</sup>                |
| Z = 4                                          |

F(000) = 552  $D_x = 1.498 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5621 reflections  $\theta = 2.4-27.1^{\circ}$   $\mu = 0.37 \text{ mm}^{-1}$  T = 298 KBlock, colourless  $0.47 \times 0.21 \times 0.10 \text{ mm}$  Data collection

| Siemens SMART CCD area-detector<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 1996)<br>$T_{min} = 0.844, T_{max} = 0.964$<br>Refinement | 5621 measured reflections<br>2082 independent reflections<br>1558 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.027$<br>$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.6^{\circ}$<br>$h = -9 \rightarrow 14$<br>$k = -6 \rightarrow 6$<br>$l = -19 \rightarrow 20$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement on $F^2$                                                                                                                                                                                                                                                                    | Secondary atom site location: difference Fourier                                                                                                                                                                                                                         |
| Least-squares matrix: full                                                                                                                                                                                                                                                             | map                                                                                                                                                                                                                                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.032$                                                                                                                                                                                                                                                        | Hydrogen site location: inferred from                                                                                                                                                                                                                                    |
| $wR(F^2) = 0.084$                                                                                                                                                                                                                                                                      | neighbouring sites                                                                                                                                                                                                                                                       |
| S = 1.05                                                                                                                                                                                                                                                                               | H-atom parameters constrained                                                                                                                                                                                                                                            |
| 2082 reflections                                                                                                                                                                                                                                                                       | $w = 1/[\sigma^2(F_o^2) + (0.0308P)^2 + 0.4882P]$                                                                                                                                                                                                                        |
| 145 parameters                                                                                                                                                                                                                                                                         | where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                           |
| 0 restraints                                                                                                                                                                                                                                                                           | $(\Delta/\sigma)_{max} = 0.001$                                                                                                                                                                                                                                          |
| Primary atom site location: structure-invariant                                                                                                                                                                                                                                        | $\Delta\rho_{max} = 0.19$ e Å <sup>-3</sup>                                                                                                                                                                                                                              |
| direct methods                                                                                                                                                                                                                                                                         | $\Delta\rho_{min} = -0.21$ e Å <sup>-3</sup>                                                                                                                                                                                                                             |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R* factors *R* are based on *F* and the state of the st

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| 06  | 0.73121 (12) | 1.2862 (3)   | 0.13436 (9)  | 0.0499 (4)                  |  |
| Na1 | 0.55064 (6)  | 0.74749 (14) | 0.44657 (5)  | 0.0350 (2)                  |  |
| Cl1 | 1.11649 (5)  | 0.25311 (12) | 0.44137 (4)  | 0.0589 (2)                  |  |
| N1  | 1.04684 (13) | 0.6295 (3)   | 0.36393 (11) | 0.0399 (5)                  |  |
| 01  | 0.69179 (11) | 0.9744 (3)   | 0.39281 (8)  | 0.0363 (4)                  |  |
| O2  | 0.64644 (11) | 1.1400 (3)   | 0.27723 (8)  | 0.0395 (4)                  |  |
| 03  | 0.42626 (11) | 1.0983 (3)   | 0.42246 (8)  | 0.0412 (4)                  |  |
| H3A | 0.4419       | 1.2194       | 0.3943       | 0.049*                      |  |
| H3B | 0.3694       | 1.0368       | 0.4027       | 0.049*                      |  |
| O4  | 0.51265 (12) | 0.4951 (3)   | 0.33326 (9)  | 0.0453 (4)                  |  |
| H4A | 0.5559       | 0.3922       | 0.3147       | 0.054*                      |  |
| H4B | 0.4714       | 0.5431       | 0.2961       | 0.054*                      |  |
| 05  | 0.37654 (11) | 0.6269 (2)   | 0.50779 (8)  | 0.0381 (4)                  |  |
| H5A | 0.3354       | 0.6360       | 0.4675       | 0.046*                      |  |
| H5B | 0.3590       | 0.7388       | 0.5391       | 0.046*                      |  |
| H6A | 0.7978       | 1.2532       | 0.1339       | 0.046*                      |  |
| H6B | 0.7082       | 1.2413       | 0.1786       | 0.046*                      |  |

| C1  | 0.70075(15)  | 0 0066 (4) | 0 32056 (12) | 0.0311 (5) |  |
|-----|--------------|------------|--------------|------------|--|
|     | 0.70075(15)  | 0.9900 (4) | 0.52050 (12) | 0.0511 (5) |  |
| C2  | 0.78312 (18) | 0.8466 (4) | 0.27717(13)  | 0.0461 (6) |  |
| H2A | 0.7443       | 0.7362     | 0.2428       | 0.055*     |  |
| H2B | 0.8230       | 0.9552     | 0.2440       | 0.055*     |  |
| C3  | 0.97016 (17) | 0.7608 (4) | 0.32733 (13) | 0.0398 (5) |  |
| H3  | 0.9909       | 0.9016     | 0.3021       | 0.048*     |  |
| C4  | 0.86306 (16) | 0.7010 (4) | 0.32460 (12) | 0.0337 (5) |  |
| C5  | 0.83412 (18) | 0.4939 (4) | 0.36460 (13) | 0.0395 (5) |  |
| Н5  | 0.7623       | 0.4490     | 0.3662       | 0.047*     |  |
| C6  | 0.91043 (18) | 0.3544 (4) | 0.40187 (13) | 0.0428 (6) |  |
| H6  | 0.8919       | 0.2143     | 0.4284       | 0.051*     |  |
| C7  | 1.01530 (17) | 0.4294 (4) | 0.39851 (12) | 0.0368 (5) |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | U <sup>23</sup> |
|-----|-------------|-------------|-------------|--------------|-------------|-----------------|
| 06  | 0.0327 (9)  | 0.0665 (11) | 0.0504 (10) | 0.0073 (8)   | 0.0012 (7)  | 0.0212 (8)      |
| Na1 | 0.0387 (5)  | 0.0315 (4)  | 0.0349 (5)  | -0.0025 (4)  | 0.0060 (4)  | 0.0001 (4)      |
| Cl1 | 0.0542 (4)  | 0.0584 (4)  | 0.0637 (4)  | 0.0218 (3)   | -0.0098 (3) | -0.0013 (3)     |
| N1  | 0.0308 (10) | 0.0401 (11) | 0.0491 (11) | 0.0015 (9)   | 0.0052 (9)  | -0.0046 (9)     |
| 01  | 0.0378 (8)  | 0.0405 (8)  | 0.0310 (8)  | -0.0005 (7)  | 0.0078 (6)  | 0.0007 (7)      |
| O2  | 0.0328 (8)  | 0.0476 (9)  | 0.0378 (9)  | 0.0095 (7)   | -0.0022 (7) | -0.0004 (8)     |
| O3  | 0.0423 (9)  | 0.0397 (9)  | 0.0413 (9)  | -0.0108 (7)  | -0.0040 (7) | 0.0033 (7)      |
| O4  | 0.0487 (9)  | 0.0488 (9)  | 0.0382 (9)  | 0.0147 (8)   | -0.0060 (7) | -0.0062 (7)     |
| 05  | 0.0420 (9)  | 0.0361 (8)  | 0.0361 (8)  | 0.0018 (7)   | -0.0001 (7) | -0.0013 (7)     |
| C1  | 0.0249 (10) | 0.0327 (11) | 0.0357 (12) | -0.0057 (9)  | 0.0008 (9)  | -0.0015 (10)    |
| C2  | 0.0482 (14) | 0.0550 (14) | 0.0352 (12) | 0.0189 (12)  | 0.0073 (10) | -0.0003 (11)    |
| C3  | 0.0409 (13) | 0.0340 (11) | 0.0449 (13) | 0.0021 (10)  | 0.0143 (10) | 0.0043 (11)     |
| C4  | 0.0349 (12) | 0.0371 (12) | 0.0294 (11) | 0.0074 (9)   | 0.0065 (9)  | -0.0050 (9)     |
| C5  | 0.0321 (12) | 0.0382 (12) | 0.0482 (14) | -0.0036 (10) | 0.0032 (10) | -0.0029 (11)    |
| C6  | 0.0455 (14) | 0.0326 (12) | 0.0504 (14) | -0.0013 (11) | 0.0070 (11) | 0.0043 (11)     |
| C7  | 0.0390 (13) | 0.0366 (12) | 0.0347 (12) | 0.0090 (10)  | 0.0016 (10) | -0.0067 (10)    |

# Geometric parameters (Å, °)

| 06—H6A                | 0.8500      | O3—H3B              | 0.8500      |
|-----------------------|-------------|---------------------|-------------|
| O6—H6B                | 0.8502      | O4—H4A              | 0.8500      |
| Nal—Ol                | 2.3632 (15) | O4—H4B              | 0.8500      |
| Na1—O5 <sup>i</sup>   | 2.3872 (16) | O5—Na1 <sup>i</sup> | 2.3872 (16) |
| Na1—O3 <sup>ii</sup>  | 2.4032 (16) | O5—H5A              | 0.8499      |
| Na1—O4                | 2.4239 (17) | O5—H5B              | 0.8500      |
| Na1—O3                | 2.5142 (17) | C1—C2               | 1.524 (3)   |
| Na1—O5                | 2.5187 (16) | C2—C4               | 1.505 (3)   |
| Na1—Na1 <sup>i</sup>  | 3.5391 (15) | C2—H2A              | 0.9700      |
| Na1—Na1 <sup>ii</sup> | 3.5823 (15) | C2—H2B              | 0.9700      |
| Cl1—C7                | 1.744 (2)   | C3—C4               | 1.376 (3)   |
| N1—C7                 | 1.319 (3)   | С3—Н3               | 0.9300      |
| N1—C3                 | 1.344 (3)   | C4—C5               | 1.386 (3)   |
| 01—C1                 | 1.246 (2)   | С5—С6               | 1.371 (3)   |
| O2—C1                 | 1.271 (2)   | С5—Н5               | 0.9300      |
|                       |             |                     |             |

| O3—Na1 <sup>ii</sup>                    | 2.4032 (16) | С6—С7                    | 1.374 (3)   |
|-----------------------------------------|-------------|--------------------------|-------------|
| ОЗ—НЗА                                  | 0.8500      | С6—Н6                    | 0.9300      |
|                                         |             |                          |             |
| H6A—O6—H6B                              | 107.0       | Na1—O3—H3B               | 105.2       |
| O1—Na1—O5 <sup>i</sup>                  | 107.88 (6)  | H3A—O3—H3B               | 106.9       |
| O1—Na1—O3 <sup>ii</sup>                 | 95.50 (6)   | Na1—O4—H4A               | 124.6       |
| O5 <sup>i</sup> —Na1—O3 <sup>ii</sup>   | 88.18 (5)   | Na1—O4—H4B               | 121.3       |
| O1—Na1—O4                               | 97.59 (6)   | H4A—O4—H4B               | 108.1       |
| O5 <sup>i</sup> —Na1—O4                 | 79.97 (5)   | Na1 <sup>i</sup> —O5—Na1 | 92.30 (5)   |
| O3 <sup>ii</sup> —Na1—O4                | 164.52 (6)  | Na1 <sup>i</sup> —O5—H5A | 122.3       |
| O1—Na1—O3                               | 89.29 (5)   | Na1—O5—H5A               | 99.2        |
| O5 <sup>i</sup> —Na1—O3                 | 162.45 (6)  | Na1 <sup>i</sup> —O5—H5B | 122.0       |
| O3 <sup>ii</sup> —Na1—O3                | 86.51 (6)   | Na1—O5—H5B               | 107.6       |
| O4—Na1—O3                               | 101.86 (6)  | H5A—O5—H5B               | 107.8       |
| O1—Na1—O5                               | 163.18 (6)  | O1—C1—O2                 | 125.41 (19) |
| O5 <sup>i</sup> —Na1—O5                 | 87.70 (5)   | O1—C1—C2                 | 120.11 (19) |
| O3 <sup>ii</sup> —Na1—O5                | 78.27 (5)   | O2—C1—C2                 | 114.48 (18) |
| O4—Na1—O5                               | 91.24 (6)   | C4—C2—C1                 | 118.45 (18) |
| O3—Na1—O5                               | 74.85 (5)   | C4—C2—H2A                | 107.7       |
| O1—Na1—Na1 <sup>i</sup>                 | 152.66 (6)  | C1—C2—H2A                | 107.7       |
| O5 <sup>i</sup> —Na1—Na1 <sup>i</sup>   | 45.32 (4)   | C4—C2—H2B                | 107.7       |
| O3 <sup>ii</sup> —Na1—Na1 <sup>i</sup>  | 80.43 (4)   | C1—C2—H2B                | 107.7       |
| O4—Na1—Na1 <sup>i</sup>                 | 84.15 (5)   | H2A—C2—H2B               | 107.1       |
| O3—Na1—Na1 <sup>i</sup>                 | 117.20 (5)  | N1—C3—C4                 | 124.5 (2)   |
| O5—Na1—Na1 <sup>i</sup>                 | 42.37 (4)   | N1—C3—H3                 | 117.8       |
| O1—Na1—Na1 <sup>ii</sup>                | 93.18 (5)   | С4—С3—Н3                 | 117.8       |
| O5 <sup>i</sup> —Na1—Na1 <sup>ii</sup>  | 130.38 (5)  | C3—C4—C5                 | 116.4 (2)   |
| O3 <sup>ii</sup> —Na1—Na1 <sup>ii</sup> | 44.47 (4)   | C3—C4—C2                 | 121.4 (2)   |
| O4—Na1—Na1 <sup>ii</sup>                | 142.25 (6)  | C5—C4—C2                 | 122.1 (2)   |
| O3—Na1—Na1 <sup>ii</sup>                | 42.04 (4)   | C6—C5—C4                 | 120.6 (2)   |
| O5—Na1—Na1 <sup>ii</sup>                | 71.35 (4)   | С6—С5—Н5                 | 119.7       |
| Na1 <sup>i</sup> —Na1—Na1 <sup>ii</sup> | 102.08 (4)  | С4—С5—Н5                 | 119.7       |
| C7—N1—C3                                | 116.48 (18) | C5—C6—C7                 | 117.5 (2)   |
| C1—O1—Na1                               | 121.26 (13) | С5—С6—Н6                 | 121.2       |
| Na1 <sup>ii</sup> —O3—Na1               | 93.49 (6)   | С7—С6—Н6                 | 121.2       |
| Na1 <sup>ii</sup> —O3—H3A               | 102.7       | N1—C7—C6                 | 124.4 (2)   |
| Na1—O3—H3A                              | 123.6       | N1—C7—C11                | 115.97 (16) |
| Na1 <sup>ii</sup> —O3—H3B               | 126.5       | C6—C7—Cl1                | 119.60 (17) |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

# Hydrogen-bond geometry (Å, °)

| D—H···A                            | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|------------------------------------|-------------|--------------|--------------|------------|
| O3—H3A····O4 <sup>iii</sup>        | 0.85        | 2.06         | 2.893 (2)    | 168        |
| O4—H4A···O2 <sup>iv</sup>          | 0.85        | 1.91         | 2.762 (2)    | 175        |
| $O3-H3B\cdots O6^{\vee}$           | 0.85        | 1.97         | 2.775 (2)    | 159        |
| $O4-H4B\cdots O2^{v}$              | 0.85        | 1.98         | 2.824 (2)    | 169        |
| O5—H5 <i>A</i> ···O6 <sup>v</sup>  | 0.85        | 2.08         | 2.886 (2)    | 157        |
| O5—H5 <i>B</i> ···O1 <sup>ii</sup> | 0.85        | 2.07         | 2.9214 (19)  | 175        |
|                                    |             |              |              |            |

# supplementary materials

| O6—H6A···N1 <sup>vi</sup> | 0.85 | 2.05 | 2.900 (2) | 173 |
|---------------------------|------|------|-----------|-----|
| O6—H6 <i>B</i> ···O2      | 0.85 | 1.95 | 2.796 (2) | 176 |

Symmetry codes: (ii) -*x*+1, -*y*+2, -*z*+1; (iii) *x*, *y*+1, *z*; (iv) *x*, *y*-1, *z*; (v) -*x*+1, *y*-1/2, -*z*+1/2; (vi) -*x*+2, *y*+1/2, -*z*+1/2.